【和倍问题和差倍问题公式】在小学数学中,和倍问题与差倍问题是常见的应用题类型,主要考察学生对基本数量关系的理解以及列方程或使用公式解决问题的能力。掌握这两种问题的解题思路和公式,有助于提高学生的逻辑思维能力和数学素养。
一、和倍问题
定义:已知两个数的和与它们的倍数关系,求这两个数各是多少的问题。
公式:
设较小的数为 $ x $,较大的数是它的 $ n $ 倍,则:
$$
x + nx = \text{总和}
$$
即:
$$
x(1 + n) = \text{总和}
$$
$$
x = \frac{\text{总和}}{1 + n}
$$
较大数为:$ nx $
二、差倍问题
定义:已知两个数的差与它们的倍数关系,求这两个数各是多少的问题。
公式:
设较小的数为 $ x $,较大的数是它的 $ n $ 倍,则:
$$
nx - x = \text{差}
$$
即:
$$
x(n - 1) = \text{差}
$$
$$
x = \frac{\text{差}}{n - 1}
$$
较大数为:$ nx $
三、总结对比表
问题类型 | 已知条件 | 公式 | 解题步骤 |
和倍问题 | 两数之和,两数之间的倍数关系 | $ x = \frac{\text{和}}{1 + n} $ | 1. 设小数为 $ x $;2. 大数为 $ nx $;3. 列方程 $ x + nx = \text{和} $;4. 求出 $ x $ |
差倍问题 | 两数之差,两数之间的倍数关系 | $ x = \frac{\text{差}}{n - 1} $ | 1. 设小数为 $ x $;2. 大数为 $ nx $;3. 列方程 $ nx - x = \text{差} $;4. 求出 $ x $ |
四、举例说明
例1(和倍问题)
甲乙两数的和是 40,甲是乙的 3 倍,求甲乙各是多少?
- 解:设乙为 $ x $,则甲为 $ 3x $
- 方程:$ x + 3x = 40 $
- 解得:$ x = 10 $,甲为 30
例2(差倍问题)
甲乙两数的差是 20,甲是乙的 4 倍,求甲乙各是多少?
- 解:设乙为 $ x $,则甲为 $ 4x $
- 方程:$ 4x - x = 20 $
- 解得:$ x = 20 $,甲为 80
通过理解并熟练运用“和倍”与“差倍”问题的公式,可以快速解决相关应用题。建议多做练习题,加深对公式的理解和记忆,提升解题效率。