首页 >> 优选问答 >

传染病防控知识宣传(传染病模型)

2022-10-28 22:59:19

问题描述:

传染病防控知识宣传(传染病模型),在线等,求秒回,真的十万火急!

最佳答案

推荐答案

2022-10-28 22:59:19

您好,今天帅帅来为大家解答以上的问题。传染病防控知识宣传,传染病模型相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、关键字:社会、经济、文化、风俗习惯等因素摘要:随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍乱、天花等曾经肆虐全球的传染性疾病已经得到有效的控制。

2、但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。

3、20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来极大的危害。

4、长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。

5、不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建立几种模型。

6、模型1在这个最简单的模型中,设时刻t的病人人数x(t)是连续、可微函数,方程(1)的解为结果表明,随着t的增加,病人人数x(t)无限增长,这显然是不符合实际的。

7、建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人才可以被传染为病人,所以在改进的模型中必须区别这两种人。

8、模型2SI模型假设条件为1.在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。

9、人群分为易感染者(Susceptible)和已感染者(Infective)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。

10、时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。

11、2.每个病人每天有效接触的平均人数是常数,称为日接触率。

12、当病人与健康者接触时,使健康者受感染变为病人。

13、方程(5)是Logistic模型。

14、它的解为这时病人增加的最快,可以认为是医院的门诊量最大的一天,预示着传染病高潮的到来,是医疗卫生部门关注的时刻其原因是模型中没有考虑到病人可以治愈,人群中的健康者只能变成病人,病人不会再变成健康者。

15、模型3SIR模型大多数传染病如天花、流感、肝炎、麻疹等治愈后均有很强的免疫力,所以病愈的人即非健康者(易感染者),也非病人(已感染者),他们已经退出传染系统。

16、这种情况比较复杂,下面将详细分析建模过程。

17、模型假设1.总人数N不变。

18、人群分为健康者、病人和病愈免疫的移出者(Removed)三类,称SIR模型。

19、三类人在总数N中占的比例分别记作s(t),i(t)和r(t)。

20、病人的日接触率为l,日治愈率为m(与SI模型相同),传染期接触为s=l/m。

21、模型构成由假设1显然有s(t)+i(t)+r(t)=1(12)根据条件2方程(8)仍然成立。

22、对于病愈免疫的移出者而言有方程(14)无法求出s(t)和i(t)的解析解,我们先作数值计算。

23、模型4SIR模型SIR模型是指易感染者被传染后变为感染者,感病者可以被治愈,并会产生免疫力,变为移除者。

24、人员流动图为:S-I-R。

25、大多数传染者如天花流感肝炎麻疹等治愈后均有很强的免疫力,所以冰域的人即非易感者,也非感病者,因此他们将被移除传染系统,我们称之为移除者,记为R类假设:1总人数为常数,且i(t)+s(t)+r(t)=n;2单位时间内一个病人能传染的人数与当时健康者人数成正比,比例系数为k(传染强度)。

26、3单位时间内病愈免疫的人数与当时的病人人数成正比,比例系数l。

27、称为恢复系数。

28、可得方程:模型分析:由以上方程组的:=p/s-1p=l/k,所以i=plns/-s+n.容易看出当t无限大时i(t)=0;而当p时,i(t)单调下将趋于零;上批示,i(t)先单调上升的最高峰,然后再单调下降趋于零。

29、所以这里仍然出现了门槛现象:p是一个门槛。

30、从p的意义可知,应该降低传染率,提高回复率,即提高卫生医疗水平。

31、令t→∞可得:―=2*(―p)/p所以:δps0=p+δ,当时,s≈2δ,这也就解释了本文开头的问题,即统一地区一种传染病每次流行时,被传染的人数大致不变。

32、模型的应用与推广:根据传染病的模型建立研究进而推广产生了传染病动力学模型。

33、传染病动力学[1]是对进行理论性定量研究的一种重要方法,是根据种群生长的特性,疾病的发生及在种群内的传播,发展规律,以及与之有关的社会等因素,建立能反映传染病动力学特性的数学模型,通过对模型动力学性态的定性,定量分析和数值模拟,来分析疾病的发展过程,揭示流行规律,预测变化趋势,分析疾病流行的原因和关键。

34、对于2003年发生的SARS疫情,国内外学者建立了大量的动力学模型研究其传播规律和趋势,研究各种隔离预防措施的强度对控制流行的作用,为决策部门提供参考.有关SARS传播动力学研究多数采用的是SIR或SEIR模型.评价措施效果或拟合实际流行数据时,往往通过改变接触率和感染效率两个参数的值来实现.石耀霖[2]建了SARS传播的系统动力学模型,以越南的数据为参考,进行了MonteCarlo实验,初步结果表明,感染率及其随时间的变化是影响SARS传播的最重要因素.蔡全才[3]建立了可定量评价SARS干预措施效果的传播动力学模型,并对北京的数据进行了较好的拟合.参考文献:[1]姜启源编辅导课程(九)主讲教师:邓磊[2]西北工业大学(数学建模)精品课程[3]耀霖.SARS传染扩散的动力学随机模型[J].科学通报,2003,48(13)1373-1377  附录:[1]数学建模就是用数学语言描述实际现象的过程。

35、这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。

36、这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容[2]数学建模的几个过程:模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。

37、用数学语言来描述问题。

38、模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

39、模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。

40、(尽量用简单的数学工具)模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。

41、模型分析:对所得的结果进行数学上的分析。

42、模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。

43、如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。

44、如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

45、模型应用:应用方式因问题的性质和建模的目的而异。

本文就为大家分享到这里,希望小伙伴们会喜欢。

  免责声明:本答案或内容为用户上传,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 如遇侵权请及时联系本站删除。

 
分享:
最新文章